LIPI
Berita
Biologi
Jurnal Ilmu-ilmu Hayati

ISSN 0126-1754
Volume 9, Nomor 6, Desember 2009
Terakreditasi A
SK Kepala LIPI
Nomor 180/AU1/P2MBI/08/2009

Diterbitkan oleh
Pusat Penelitian Biologi - LIPI

Diterbitkan 3 kali dalam setahun yakni bulan April, Agustus dan Desember. Setiap volume terdiri dari 6 nomor.

Surat Keputusan Ketua LIPI

Dewan Pengurus

Pemimpin Redaksi
B Paul Naiola

Anggota Redaksi
Andria Agusta, Dwi Astuti, Hari Sutrisno, Iwan Sankaawan
Kusumadewi Sri Yulita, Marlina Ardiyani, Tukirin Partomihardjo

Desain dan Komputerisasi
Muhammad Ruslan, Yosman

Sekretaris Redaksi/Korespondensi Umum
(berlangsungan, surat-menyurat dan kearsipan)
Enok, Ruswenti, Budiarjo

Pusat Penelitian Biologi-LIPI
Kompleks Cibinong Science Centre (CSC-LIPI)
Jl Raya Jakarta-Bogor Km 46,
Cibinong 16911, Bogor - Indonesia
Telpn (021) 8765066 - 8765067
Faksimil (021) 8765063
Email: berita.biologi@lipi.go.id
ksama_p2biologi@yahoo.com
herbogor@indo.net.id

Cover depan: Wujud morfologi sekujumfamily Lecithemiaceae (Hepaticae - Lunni bati) sesuai makalah
di halaman 681 (Foto: Koleksi Herbarium Bogoricense, Bidang Botani-Pusat Penelitian Biologi-
LIPI – Ida Haerida).
Karangan ilmiah asli, *hasil penelitian* dan belum pernah diterbitkan atau tidak sedang dikirim ke media lain. Makalah yang sedang dalam proses penilaian dan penyuntingan, tidak diperkenankan untuk ditarik kembali, sebelum ada keputusan resmi dari Dewan Redaksi.

C. Masalah yang diliput, diharapkan aspek "baru" dalam bidang-bidang:
 - Biologi dasar (*pure biology*), meliputi turunan-turunannya (mikrobiologi, fisiologi, ekologi, genetika, morfologi, sistematis/ taksonomi dsbnya).
 - Ilmu serumpun dengan biologi: pertanian, kelautan, peternakan, perikanan air tawar dan biologi kelautan, agrobiologi, limnologi, agrobiklimatologi, kesehatan, kimia, lingkungan, agroforestri.
 - *Aspek/pendekatan biologi* harus tampak jelas.

D. Deskripsi masalah: harus jelas adanya tantangan ilmiah (*scientific challenge*).

E. Metode pendekatan masalah: standar, sesuai bidang masing-masing.

F. Hasil: hasil temuan harus jelas dan terarah.

G. Kerangka karangan: standar.

Abstrak dalam bahasa Inggris, maksimum 200 kata, spasi tunggal, isi singkat, padat yang pada dasarnya menjelaskan masalah dan hasil temuan. Kata kunci 5-7 buah. *Hasil dipisahkan dari Pembahasan*.

I. Cara penulisan sumber pustaka: tuliskan nama jurnal, buku, prosiding atau sumber lainnya secara lengkap. Nama inisial pengarang(pengarang) tidak perlu diberi tanda titik pemsias.
 a. Jurnal

 b. Buku

 c. Prosiding atau hasil Simposium/Seminar/Lokakarya dan sebagainya:

 d. Makalah sebagai bagian dari buku

10. Kirimkan 2 (dua) eksemplar makalah ke Redaksi (alamat pada cover depan-dalam) yang ditulis dengan program Microsoft Word 2000 ke atas. Satu eksemplar tanpa nama dan alamat penulis (-penulis)nya. Sertakan juga copy file dalam CD (bukan disket), untuk kebutuhan Referen/Mitra bestari. Kirimkan juga file nya melalui alamat elektronik (e-mail) resmi Berita Biologi: berita.biologi@mail.lipi.go.id dan di-Cc kan kepada: ksama_p2biologi@yahoo.com.

11. Sertakan alamat Penulis (termasuk elektronik) yang jelas, juga meliputi nomor telepon (termasuk HP) yang dengan mudah dan cepat dihubungi.
Anggota Referee / Mitra Bestari

Mikrobiologi
Dr Bambang Sunarko (Pusat Penelitian Biologi-LIPI)
Prof Dr Feliatra (Universitas Riana)
Dr Hedy Julistiono (Pusat Penelitian Biologi-LIPI)
Dr I Nengah Sujeja (Universitas Udayana)
Dr. Joko Sulistyow (Pusat Penelitian Biologi-LIPI)
Dr Joko Widodo (Universitas Gajah Mada)
Dr Lisdar I Sudirman (Institut Pertanian Bogor)
Dr Ocky Karna Radjasa (Universitas Diponegoro)

Mikologi
Dr Dono Wahyono (BB Litbang Tanaman Rempah dan Obat-Depati)
Dr Kartini Kramadibrata (Pusat Penelitian Biologi-LIPI)

Genetika
Prof Dr Alex Hartana (Institut Pertanian Bogor)
Dr Wardil Ali Qosim (Universitas Padjadjaran)
Dr Yuyu Suryasari Poerba (Pusat Penelitian Biologi-LIPI)

Taxonomi
Dr Ary P Kelm (Pusat Penelitian Biologi-LIPI)
Dr Daisy Wowor (Pusat Penelitian Biologi-LIPI)
Prof (Ris) Dr Johanas P Moge (Pusat Penelitian Biologi-LIPI)
Dr Rosichon Ubaidillah (Pusat Penelitian Biologi-LIPI)

Biologi Molekuler
Dr Eni Sudarmonowati (Pusat Penelitian Bioteknologi-LIPI)
Dr Endang Gati Lestari (BB Litbang Bioteknologi dan Sumberdaya Genetik Pertanian-Depati)
Dr Hendig Sunarno (Badan Tenaga Atom Nasional)
Dr I Made Sudiana (Pusat Penelitian Biologi-LIPI)
Dr Nurilna Bermawie (BB Litbang Tanaman Rempah dan Obat-Depati)
Dr Yusniya Said (Universitas Lampung)

Bioteknologi
Dr Andi Utama (Pusat Penelitian Bioteknologi-LIPI)
Dr Nyoman Mantik Astawa (Universitas Udayana)

Veteriner
Prof Dr Fadjur Satrija (FKH-LIPI)

Biologi Peternakan
Prof (Ris) Dr Subandyo (Pusat Penelitian Ternak-Depati)

Ekologi
Dr Didik Widyatmoko (Pusat Konservasi Tumbuhan-LIPI)
Dr Dewi Malisa Prawiradilaga (Pusat Penelitian Biologi-LIPI)
Dr Frans Wospakrik (Universitas Papua)
Dr Herman Daryono (Pusat Penelitian Fluran-Dekat)
Dr Istomo (Institut Pertanian Bogor)
Dr Michael L Riwu Kaho (Universitas Nusa Cendana)
Dr Sih Kahono (Pusat Penelitian Biologi-LIPI)

Biokimia
Prof Dr Adeg Zamrud Adnan (Universitas Andalan)
Dr Deasy Natalia (Institut Teknologi Bandung)
Dr Elfahmi (Institut Teknologi Bandung)
Dr Herto Dwi Artesyd (Institut Teknologi Bandung)
Dr Tri Muningsih (Pusat Penelitian Biologi-LIPI)

Fisiologi
Prof Dr Bambang Sapto Purwoko (Institut Pertanian Bogor)
Dr Gono Somdini (Pusat Penelitian Biologi-LIPI)
Dr Irwan (Pusat Konservasi Tumbuhan-LIPI)
Dr Nuril Hidayati (Pusat Penelitian Biologi-LIPI)
Dr Wartika Rosa Farida (Pusat Penelitian Biologi-LIPI)

Biostatistik
Ir Fahreha Sukri, MSc (Institut Pertanian Bogor)

Biologi Peraianan Darat/Limnologi
Dr Cynthia Henry (Pusat Penelitian Limnologi-LIPI)
Dr Fauzan Ali (Pusat Penelitian Limnologi-LIPI)
Dr Rudhy Gustiano (Balai Riset Perikanan Budidaya Air Tawar-DKP)

Biologi Tanah
Dr Rasti Saraswati (BB Sumberdaya Lahan Pertanian-Depati)

Biodiversitas dan Iklim
Dr Rizaldi Boed (Institut Pertanian Bogor)
Dr Tania June (Institut Pertanian Bogor)

Biologi Kelautan
Prof Dr Chair Rani (Universitas Hasanuddin)
Dr Magdalena Limay (Universitas Hasanuddin)
Prof (Ris) Dr Ngurah Nyoman Wiadnyana (Pusat Riset Perikanan Tangkap-DKP)
Dr Nyoto Santoso (Lembaga Pengkajian dan Pengembangan Mangrove)
Berita Biologi menyampaikan terima kasih kepada para Mitra Bestari/Penilai (Referee) nomor ini 9(6) – Desember 2009

Dr. W. Rosa Farida – Pusat Penelitian Biologi-LIPI
Dr. Heddy Yulistiono – Pusat Penelitian Biologi-LIPI
Dr. Iwan Saksiawan – Pusat Penelitian Biologi-LIPI
Dr. Nuril Hidayati – Pusat Penelitian Biologi-LIPI
Ir. Rismita Sari MSc – PKT Kebun Raya Bogor
Dr. Rudhy Gustiano – Balai Riset Perikanan Budidaya Air Tower
Dr. Robert Stuebing – Field Museum Natural History, Chicago, Illinois-USA
Prof. Dr. Adek Zamrud Adnan – FMIPA Universitas Andalas
 Dr. Izu A. Fijridiyanto – PKT Kebun Raya Bogor
 Dr. B Paul Naiola – Pusat Penelitian Biologi-LIPI
Dr. Agus Lazarus Sukamto – Pusat Penelitian Biologi-LIPI
Dr. Cynthia Henny – Pusat Penelitian Limnologi-LIPI
Dr. Sarjiya Antonius – Pusat Penelitian Biologi-LIPI
Dr. Djoko Sulistyo – Pusat Penelitian Biologi-LIPI
DAFTAR ISI

MAKALAH HASIL RISET (ORIGINAL PAPERS)

<table>
<thead>
<tr>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPAYA DOMESTIKASI TANGKASI (Tarsius spectrum) MELALUI OPTIMALISASI</td>
<td>649</td>
</tr>
<tr>
<td>PEMBERIAN PAKAN SECARA GRADUAL DALAM PENANGKARAN</td>
<td></td>
</tr>
<tr>
<td>[Domesticating Process of Tarsius (Tarsius Spectrum) by Gradually</td>
<td></td>
</tr>
<tr>
<td>Optimal Feeding System in Wire Netting Pen]</td>
<td></td>
</tr>
<tr>
<td>Hengki J Kirah</td>
<td></td>
</tr>
<tr>
<td>PERFORMA BAKTERI PADA TANAH TERCEREMAR PESTISIDA</td>
<td>657</td>
</tr>
<tr>
<td>[Bacterial Perform in Soil Contaminated with Pesticide]</td>
<td></td>
</tr>
<tr>
<td>Maman Rohmansyah dan Nunik Sulistinah</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus G1 DAN Alteromonas sp.G2 BAKTERI PENDEGRADASI PHEHANTRENE YANG DIISOLASI DARI LINGKUNGAN LAUT</td>
<td>665</td>
</tr>
<tr>
<td>Staphylococcus G1 and Alteromonas sp.G2 Phenanthrene Degradation Bacteria Isolated from Marine Environment</td>
<td></td>
</tr>
<tr>
<td>Dyah Supriyati</td>
<td></td>
</tr>
<tr>
<td>EVALUASI PERTUMBUHAN DAN PRODUKSI TANAMAN KOLESI PLASMA NUTFAH JARAK PAGAR (Jatropha curcas L.)</td>
<td>673</td>
</tr>
<tr>
<td>[Growth and Production Evaluation of Jatropha (Jatropha curcas L.) Germplasm Collections]</td>
<td></td>
</tr>
<tr>
<td>Dedi Soleh Effendi</td>
<td></td>
</tr>
<tr>
<td>KEANEKARAGAMAN SUKU LEJEUNACEAE (HEPATICAE, LUMUT HATI) DI DAERAH SEKITAR PPKAB (PUSAT PENDIDIKAN DAN KONSERVASI ALAM BODOGOL) TAMAN NASIONAL GUNUNG GEDE-PANGRANGO, JAWA BARAT</td>
<td>683</td>
</tr>
<tr>
<td>[Diversity of Lejeunaceae from Surrounding Area of Bodogol Education Center and Conservation, Gunung Gede-Pangrango National Park]</td>
<td></td>
</tr>
<tr>
<td>Ida Haeida</td>
<td></td>
</tr>
<tr>
<td>PENENTUAN FREKUENSI PEMBERIAN PAKAN UNTUK MENDUKUNG PERTUMBUHAN BENIH IKAN PATIN PASUPATI</td>
<td>693</td>
</tr>
<tr>
<td>[Determination of Different Feeding Frequency on The Growth of Patin Pasupati Fingerlings]</td>
<td></td>
</tr>
<tr>
<td>Evi Teleporki dan Ningrum Soehanda</td>
<td></td>
</tr>
<tr>
<td>NEGATIVE IMPACT OF FOREST DEGRADATION TO HERPETOFAUNA SPECIES RICHNESS IN KERINCI SEBLAT NATIONAL PARK, SUMATRA</td>
<td>699</td>
</tr>
<tr>
<td>[Dampak Negatif dari Degradasi Hutan Terhadap Kekayaan Jenis Herpetofauna di Taman Nasional Kerinci Seblat, Sumatra]</td>
<td></td>
</tr>
<tr>
<td>Heleni Kurnia</td>
<td></td>
</tr>
<tr>
<td>PENGARUH MINYAK ATSIRI SERAI (Andropogon citratus DC.) TERHADAP BAKTERI YANG DIISOLASI DARI SAPI MASTITIS SUBKLINIS</td>
<td>715</td>
</tr>
<tr>
<td>[The Effects of Lemon Grass (Andropogon citratus DC) Extract to the Growth of Bacteria Isolated from Subclinical Mastitis Ridden Cows]</td>
<td></td>
</tr>
<tr>
<td>Masriati Pooelagen</td>
<td></td>
</tr>
<tr>
<td>Chemical Compound of Essential Oils from Melodorum cymbarum (Maing. ex Hook. f & Thoms), Litsna firma (Blume) Hook. f, Fl. Brit. Ind. and Callistemon lanceolatus D.C.</td>
<td></td>
</tr>
<tr>
<td>Yulicari Jamal</td>
<td></td>
</tr>
</tbody>
</table>
PENAPISAN AKTIVITAS LIPOLITIK SEPULUH BIAKAN Rhizopus KOLEKSI UICC
(UNIVERSITY OF INDONESIA CULTURE COLLECTION)
[Screening Lipolytic Activity of Ten Strains Rhizopus from University of Indonesia Culture Collection (UICC)]
Wibowo Mangunwardoyo, Yuyun Lusini dan Indrawati Gandjar 731

MUNDU : Garcinia xanthochymus Hook.f. atau G. dulcis (Roxb.) Kurz.
[Mundu: Garcinia xanthochymus Hook.f. or G. dulcis (Roxb.) Kurz.]
Nanda Utami dan Rismita Sarı ... 739

PERAN PEMUPUKAN POSFOR TERHADAP PERTUMBUHAN TANAMAN JAGUNG (Zea Mays L.) DI TANAH REGOSOL DAN LATOSOL
[The Role of Phosphorus Fertilization on the Growth of Maize (Zea mays L.) in Regosol and Latosol Soils]
Arfin Fahmi, Syamsudin, Sri Nuryani H Utami dan Bos:ang Radjagukguk 745

PENGUNAAN PACLOBUTRAZOL DAN ABA DALAM PERBANYAKAN NENAS SIMADU MELALUI KULTUR IN VITRO
[Using of paclobutrazol and ABA on Simadu pineapple variety through in vitro culture]
Ragapadmi Purnamaningsih, Ika Mariska dan Yati Supriatni .. 751

PEMANFAATAN ECGENG CONDOK (Eichhornia crassipes (Mart) Solm) SEBAGAI TEKNIK ALTERNATIF DALAM PENGOLAHAN BIOLOGIS AIR LIMBAH ASAL RUMAH PEMOTONGAN HEWAN (RPH) PESANGLARAN, DENPASAR, BALI
[The Use of Water Hyacinth (Eichhornia crassipes (Mart) Solm) as an Alternative Technique for the Wastewater Biological Treatment at Pesanggrahan Slaughterhouse]
IW Suardana ... 759

PENGARUH NAUNGAN TERHADAP PERTUMBUHAN BIBIT PULAI (Alstonia scholaris (L.) R.Br)
[The Effect of Shading on the Growth of Pulai (Alstonia scholaris (L.) R.Br. Seedlings)]
Titi Juhaeti ... 767

BIOLOGI BIJI GEWANG (Corypha utan Lamark): KERAGAMAN KANDUNGAN EMBRIO, KIMIA DAN PERANAN MIKROBA DALAM PROSES PERKECAMBAHAN BIJI
[Biology of Gewang (Corypha utan Lamark) Seeds: Embryo Content Diversity, Chemical Content and the Roles of Microbes in Seed Germination]
BP Naiola dan N Kirhidayat ... 773

AKTIVITAS FOSFATASE TANAH DI LINGKUNGAN BENTANG HUTAN ALAMI DAN NON-ALAMI
[Phosphatase Activity in Soil Belongs to Natural and Non-natural Forest Landscape]
Sulisah dan Maman Rahmainyah .. 783

ISOLASI DAN SELEKSI JAMUR APHYLLOPHORALES PENGURAI LIGNIN DI HUTAN BUKIT BANGKRAI
[Isolation and Selection of Aphylllophorales as Lignin Degrading Fungi in Forest of Bukit Bangkrai]
YB. Suhodo .. 793

MIKROBA ENDOFITIK DARI TAMAN NASIONAL BATANG GADIS SUMATERA UTARA: POTENSINYA DALAM MENGHASILKAN SENYAWA ANTIMIKROBA TERHADAP MIKROBA PATOGEN
[Endophytic Microbes from Batang Gadis National Park, North Sumatra: Their Potential for Producing Antimicrobes Bioactive Compound Against Pathogenic Microbes]
Harmastini Sukimon, Sylvia Lekatompessy dan Tiwi Widiani ... 801

METIL EUGENOL, KHEMOTIPE DARi MINYAK ATSIRI MelaLeuca spp. (MYRACEAE)
YANG TUMBUH DI KEBUN RAYA CIBODAS
[Methyl Eugenol, Chemotype of Essential Oils of MelaLeuca spp. (Myrtaeae) Growing in Cibodas Botanical Garden]
Tri Murningsih, Chairul dan Emma Sri Kuncari .. 809
PERAN PEMUPUKAN POSFOR DALAM PERTUMBUHAN TANAMAN JAGUNG (Zea mays L.) DI TANAH REGOSOLDAN LATOSOL

[The Role of Phosphorus Fertilization on the Growth of Maize (Zea mays L.) in Regosol and Latosol Soils]

Arifin Fahmi, Syamsudin, Sri Nuryani H Utami dan Bostang Radjagukguk

*Balai Penelitian Pertanian Lahan Rawa
*Balai Penelitian dan Pengkajian Pertanian Sulawesi Selatan
*Jurnusan Tanah, Fakultas Pertanian, Universitas Gadjah Mada
*e-mail: fahmi_nbl@yahoo.co.id

ABSTRACT

Phosphorus (P) is an essential element for plants, deficiency and excess of P in soil will limit plant growth. It is required to apply P fertilizer in appropriate dosage for promoting plant growth on the soil with different properties. The purpose of experiment was to study the response of maize (Zea mays L.) for phosphorus fertilization on Regosol and Latosol soils. A glass house experiment was conducted to study maize response on P fertilizer application in Regosol and Latosol soils. The treatment was 0, 112, 336, 1008, 3024 and 9072 kg superfosfat ha⁻¹. P fertilizer tend to increase the biomass of maize but exceed of P fertilizer reduced maize biomass. The optimum fertilization and availability of P for plant affected by soil properties.

Kata kunci: Jagung, posfor, latosol, regosol.

PENDAHULUAN

Posfor (P) merupakan salah satu unsur esensial penyusun ATP, nucleotida, asam nucleat dan phospholipids (Barker and Pilbeam, 2007). Fungsi utamanya sebagai cadangan energi serta sebagai penyusun senyawa-senyawa untuk merubah energi, untuk sistem informasi genetik, untuk memberi sal, dan fosfoprotein (Dobermann and Fairhurst, 2000). Sejalan dengan itu P berperan dalam perkembangan akar, pembungaan dan pemasakan buah, P bersifat mobile dalam jaringan tanaman sehingga gejala defisiensi P ditunjukkan pertama kali oleh daun tua.

Tanaman menyerap P dalam bentuk H₂PO₄⁻ dan HPO₄²⁻ dari tanah. Posfor di tanah bersal dari mineral, bahan organik dan pupuk, sebagian besar pupuk P yang diberikan dalam tanah akan mengalami fiksi pada fase padatan tanah seperti Fe dan Al oksida, P dalam tanah akan dikonversi menjadi bentuk Ca-P, Al-P dan Fe-P. Bentuk, besarnya fiksi, dan ketersediaan P dalam tanah sangat dipengaruhi oleh pH tanah (Barker and Pilbeam, 2007; Havlin et al., 2005).

Tanah regosol merupakan tanah yang mudah hampir tanpa perkembangan. Tanah regosol adalah tanah yang bersal dari bahan aluvial berbagai sumber seperti abu vulkan, sedimen sungai maupun endapan kuarsa laut sehingga banyak terdapat di sekitar sungai, bentekstur pasir, struktur lepas, kapasitas menahan air dan unsur hara rendah, kandungan bahan organik rendah, permeabilitas cepat, konsistensinya dapat bersifat gembur dan lepas, serta porositasnya besar. Kecenderungan oksidasi bahan organik begini cepat dan tanah lebih cepat menjadi kering, mempunyai pH tanah netral, koloid-koloid tanah dan unsur hara mudah hilang melalui pelindig. Tanah regosol termasuk tanah yang mempunyai potensi kesuburan rendah, tetapi masih bisa ditingkatkan dengan input seperti pemasokan air dan pupuk (Munir, 1996).

Tanah latosol pertama kali diusulkan oleh Kellogg pada tahun 1949 dengan sifat tanah yang memiliki nilai SiO₂ fraksi lempung rendah, KPK rendah, kemantapan agregat tinggi, dan berwarna merah yang memiliki pelapukan dan perkembangan banjir sehingga beraksa masam, kandungan hura P, K, Ca dan Mg sangat rendah sedangkan kadar Al dan Fe yang tinggi (Dharmawijaya, 1997).

Berdasarkan hal tersebut di atas maka kiranya perlu diketahui peranan pemupukan P pada kedua jenis tanah yang memiliki sifat berbeda dengan menggunakan tanaman jagung (Zea mays L.) sebagai indikator biologinya.

Tujuan percobaan ini adalah mempelajari tanggapan tanaman jagung terhadap gradasi
konsentrasi jumlah pupuk P yang diberikan di tanah regosol dan latosol.

Menghitung titik optimum pemupukan P untuk tanaman jagung dan konsentrasi P tersedia pada tanah regosol dan latosol.

BAHAN DAN METODE

Bahan yang digunakan dalam percobaan ini adalah benih jagung, tanah latosol dan regosol, pupuk basal dan pupuk P untuk perlakuan. Tanah yang digunakan berasal dari lapisan atas dengan kedalaman 20 cm, disaring dengan ukuran 0,5 mm. Tanah ditimbang seberat 2 kg dan dimasukkan kedalam pot yang tidak memiliki lubang di bawahnya sehingga tidak ada pelindian, dibutuhkan 18 pot plastik untuk masing-masing jenis tanah. Perlakuan berjumlah 6 aras dengan 3 ulangan pada masing-masing tanah.

Setiap pot diberi pupuk basal 10 ml yang berisi kuantitas ekuivalen pupuk-pupuk berikut (bersarakan area dan luas permukaan tanah): \(\text{NH}_4\text{NO}_3 \) (627 kg/ha), \(\text{CaSO}_4 \) (250 kg/ha), \(\text{MgSO}_4 \) (50 kg/ha), \(\text{K}_2\text{SO}_4 \) (225 kg/ha), \(\text{ZnSO}_4\cdot7\text{H}_2\text{O} \) (14 kg/ha), \(\text{CuSO}_4\cdot5\text{H}_2\text{O} \) (14 kg/ha) dan \(\text{MgSO}_4\cdot7\text{H}_2\text{O} \) (125 kg/ha). Pupuk diberikan untuk mencukupi keperluan pertumbuhan tanaman.

Percobaan ini menggunakan rancangan acak kelompok dengan perlakuan pemupukan P. Larutan pupuk P disebarikan merata ke permukaan tanah dalam pot sesuai perlakuan, dengan 6 aras perlakuan pemupukan P sebagaimana yang tertera dalam Tabel 1. Perlakuan diberikan sesaat sebelum penanaman benih jagung, dan untuk keperluan pemeliharaan maka setiap harinya dilakukan penyiraman pot dengan air aquades yang jumlahnya tetap ditentukan berdasarkan perhitungan ketersediaan air pada kapasitas lapang untuk kedua jenis tanah.

Parameter pengamatan

Parameter yang diamati dalam percobaan ini adalah tinggi tanaman, berat kering trubus, berat kering akar, berat kering total dan nisbah berat kering trubus/akar tanaman, serta P tersedia dalam tanah dengan metode Bray 1 (Olsen dan Somer, 1982). Sebelum diberikan perlakuan dilakukan analisis pendahuluan terhadap beberapa sifat penciri tanah (Lampiran 1).

HASIL

Tinggi Tanaman

Pemupukan P pada tanah regosol dan latosol menunjukkan pengaruh nyata terhadap tinggi tanaman dibandingkan kontrol, pengaruh ini mulai terlihat dari minggu ke 4 sampai minggu ke 7, tetapi pada minggu ke 6 dan 7 dosis pemupukan P yang diberikan (selain kontrol) tidak lagi berpengaruh terhadap pertambahan tinggi tanaman di tanah regosol; sedangkan pada tanah latosol pemupukan P yang diberikan (selain kontrol) tidak lagi berpengaruh terhadap pertambahan tinggi tanaman hanya terjadi pada minggu ke 7 (Tabel 2 dan Tabel 3).

Berat kering tanaman

Berdasarkan Tabel 4, pemupukan P pada tanah regosol berpengaruh nyata pada berat kering trubus, berat kering akar dan berat kering total tanaman jagung, sedangkan pada tanah latosol pemupukan P secara umum berpengaruh pada berat total tanaman jagung. Berat total tertinggi ditunjukkan oleh perlakuan P9, P127 dan P81 pada tanah regosol sedangkan pada tanah latosol ditunjukkan oleh perlakuan P81.

Titik optimum pemupukan

Berdasarkan Gambar 2 diketahui bahwa berat kering total optimum tanaman jagung yang berbeda dari kedua jenis tanah sebagai akibat tumbuhan pupuk P yang diberikan kepada kedua jenis tersebut. Tanaman jagung yang ditanam di tanah regosol memperlihatkan berat kering total yang lebih tinggi (46 gr) dibandingkan tanaman jagung yang ditanam di tanah latosol (36 gr) pada dosis pemberian 9 ml Ca \((\text{H}_2\text{PO}_4) \) atau setara 1.008 kg superfosfat ha\(^{-1}\).

Pemberian pupuk P ke tanah dengan gradasi jumlah yang semakin meningkat menyebabkan terjadinya peningkatan konsentrasi P tersedia dalam tanah, dimana konsentrasi P tersedia pada tanah Regosol secara konsisten lebih tinggi daripada P tersedia pada tanah Latosol (Gambar 3).

PEMBAHASAN

Tinggi Tanaman

Peningkatan tinggi tanaman yang mengikuti dosis pemberian pupuk P (Tabel 2 dan Tabel 3) menunjukkan bahwa P merupakan unsur yang sangat
Tabel 1. Perkalian pupuk P pada tanah Regosol dan Latosol

<table>
<thead>
<tr>
<th>Kode</th>
<th>Koncentrasi Pupuk</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>0 ml Ca(H2PO4)2</td>
<td>Tikal dipupuk (Kontrol)</td>
</tr>
<tr>
<td>P1</td>
<td>1 ml Ca(H2PO4)2</td>
<td>(20 mg P ml⁻¹) = P di dalam 112 kg superfosfat ha⁻¹</td>
</tr>
<tr>
<td>P3</td>
<td>3 ml Ca(H2PO4)2</td>
<td>(20 mg P ml⁻¹) = P di dalam 336 kg superfosfat ha⁻¹</td>
</tr>
<tr>
<td>P9</td>
<td>9 ml Ca(H2PO4)2</td>
<td>(20 mg P ml⁻¹) = P di dalam 1.008 kg superfosfat ha⁻¹</td>
</tr>
<tr>
<td>P27</td>
<td>40 ml Ca(H2PO4)2</td>
<td>(54 mg P ml⁻¹) = P di dalam 3.024 kg superfosfat ha⁻¹</td>
</tr>
<tr>
<td>P81</td>
<td>65 gr Ca(H2PO4)2</td>
<td>P di dalam 4.072 kg superfosfat ha⁻¹</td>
</tr>
</tbody>
</table>

Tabel 2. Pengaruh pemberian pupuk P terhadap tinggi tanaman jagung pada tanah Regosol

<table>
<thead>
<tr>
<th>Perkalian</th>
<th>Umur tanaman (minggu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P0</td>
<td>21.4a</td>
</tr>
<tr>
<td>P1</td>
<td>21.6a</td>
</tr>
<tr>
<td>P3</td>
<td>21.2a</td>
</tr>
<tr>
<td>P9</td>
<td>20.7a</td>
</tr>
<tr>
<td>P27</td>
<td>20.9a</td>
</tr>
<tr>
<td>P81</td>
<td>21.2a</td>
</tr>
<tr>
<td>KK</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Tabel 3. Pengaruh pemberian pupuk P terhadap tinggi tanaman jagung pada tanah Latosol

<table>
<thead>
<tr>
<th>Perkalian</th>
<th>Umur tanaman (minggu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P0</td>
<td>23.9a</td>
</tr>
<tr>
<td>P1</td>
<td>23.1a</td>
</tr>
<tr>
<td>P3</td>
<td>20.3a</td>
</tr>
<tr>
<td>P9</td>
<td>18.9a</td>
</tr>
<tr>
<td>P27</td>
<td>20.4a</td>
</tr>
<tr>
<td>P81</td>
<td>17.5a</td>
</tr>
<tr>
<td>KK</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Tabel 4. Pengaruh pemberian pupuk P terhadap berat kering trubus, berat kering akar, berat kering total dan nisbah berat kering trubus/akar tanaman jagung pada tanah Regosol dan Latosol

<table>
<thead>
<tr>
<th>Perkalian</th>
<th>Trubus (gr)</th>
<th>Akar (gr)</th>
<th>Total (gr)</th>
<th>Trubus/ Akar</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>4.3c</td>
<td>1.80e</td>
<td>6.0̅c</td>
<td>2.2a</td>
</tr>
<tr>
<td>P1</td>
<td>12.7b</td>
<td>6.1b</td>
<td>18.8̅b</td>
<td>2.1a</td>
</tr>
<tr>
<td>P3</td>
<td>18.4b</td>
<td>6.3b</td>
<td>24.7b</td>
<td>3.9a</td>
</tr>
<tr>
<td>P9</td>
<td>32.6a</td>
<td>3.5a</td>
<td>36.1a</td>
<td>9.6a</td>
</tr>
<tr>
<td>P27</td>
<td>56.8a</td>
<td>3.5a</td>
<td>62.3a</td>
<td>17.6a</td>
</tr>
<tr>
<td>P81</td>
<td>51.3a</td>
<td>4.1a</td>
<td>55.4a</td>
<td>11.1a</td>
</tr>
<tr>
<td>KK</td>
<td>12.5</td>
<td>15.6</td>
<td>28.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Berita Biologi 2008 - December 2008

Penting dalam pertumbuhan tanaman. Peningkatan pemberian dosis pupuk P menyebabkan terjadinya peningkatan konsentrasi P tersedia dalam tanah sehingga tanaman menjadi lebih mudah menyerap P dari dalam tanah untuk mendukung pertumbuhannya (Gambar 3). Kekurangan unsur P akan menyebabkan pertumbuhan tanaman terhambat (kerdil) karena unsur P merupakan penyusun gula fosfat yang berperan dalam nukleotida dan berperan penting dalam metabolisme energi (Salisbury dan Ross, 1995; Lambers et al., 2008).

Mulai dari mungking ke 4 terjadi peningkatan tinggi tanaman secara nyata dari semua dosa pupuk P diandungi kontrol (Tabel 2 dan Tabel 3). hal ini diduga disebabkan ketersediaan P yang berasal dari tanah mulai pada mungking ke 4 sudah turut dipupuk benh.
Gambar 1. Pengaruh pemberian pupuk P terhadap tinggi tanaman jagung pada tanah regosol dan latsol

Gambar 2. Pengaruh tambahan pupuk P (P0, P1, P3, P9, P27, P81) terhadap berat kering total (gr) tanaman jagung di tanah regosol dan latsol

Gambar 3. Pengaruh tambahan pupuk P (P0, P1, P3, P9, P27, P81) terhadap konsentratasi P tersedia di tanah regosol dan latsol.

untuk mendukung pertumbuhan tanaman; sedangkan pada perlakuan yang mendapat tambahan pupuk P masih dapat dipenuhi kebutuhan hara P tanaman oleh tanah. Dari percobaan ini secara jelas dapat dinyatakan bahwa P merupakan faktor pembatas pertumbuhan tanaman jagung karena kebutuhan hara tanaman lainnya selain P sudah diberikan dalam jumlah yang diperhitungkan cukup untuk mendukung pertumbuhan
secara optimum. Menurut Marschner (1986) bahwa pertumbuhan tanaman ditentukan oleh faktor (unsur hara) yang paling minimum atau kritis.

Berat basah dan berat kering tanaman

Tidak ada perbedaan berat kering total tanaman jagung antara perlakuan P9, P27 dan P81 (Tabel 4) hal ini diduga berhubungan dengan jumlah hara yang optimum untuk mendukung pertumbuhan yang maksimum. Pada tanah regosol terlihat jelas bahwa titik optimum terjadi pada perlakuan P9 dan bahkan pada P81 ada kecenderungan penurunan dibanding P27 (Gambar 3). Hal ini menunjukkan bahwa pemberian P yang berlebih (di atas kebutuhan optimum), akan menyebabkan kenaikan hasil yang semakin berkurang dan bahkan jika terlalu berlebihan cenderung menjadi toksik bagi tanaman. Sedangkan pada tanah Latosol titik optimum terjadi juga pada perlakuan P9, tetapi pada P27 turun lagi dan kemudian naik kembali pada P81 (Gambar 3). Perbedaan titik optimum diduga berhubungan dengan sifat kedua jenis tanah yang berbeda di mana kandungan Al (Lampiran 1) sebagai logam yang dapat memfiksasi P terdapat lebih tinggi pada tanah latosol daripada tanah regosol. Menurut Johnson dan Loeppert (2006) bahwa Al adalah unsur yang mampu memfiksasi P dengan kuat, selain itu hal tersebut dapat pula disebabkan kandungan P awal di tanah Regosol yang lebih tinggi daripada tanah Latosol (Lampiran 1).

Titik optimum pemupukan

Konsentrasi P tersedia dalam tanah

Pemberian pupuk P pada tanah regosol dan latosol menyebabkan peningkatan P tersedia dalam tanah, tetapi secara konsisten konsentrasi P tersedia pada tanah Regosol lebih tinggi daripada tanah Latosol hal ini disebabkan perbedaan sifat dasar dari kedua jenis tanah seperti pH tanah dan kandungan Al, pH tanah yang rendah meningkatkan konsentrasi Al dan tingginya konsentrasi Al menyebabkan jumlah P yang difiksasi oleh Al menjadi semakin tinggi (Barker dan Pilbeam, 2007).

KESIMPULAN

Penupukan P pada tanah regosol dan latosol secara nyata meningkatkan tinggi tanaman dan berat kering tanaman jagung.

Tanaman jagung memberikan respons positif terhadap pemberian pupuk P dengan gradasi konsentrasi tertapi jika jumlah pupuk P yang diberikan di atas titik optimum maka terlihat adanya kecenderungan peningkatan biomassa yang sangat rendah atau bahkan menurun.

Titik optimum pemupukan P dan konsentrasi P tersedia dalam tanah sangat dipengaruhi oleh sifat dan dua jenis tanah.

DAFTAR PUSTAKA

Lampiran I. Sifat penciri tanah yang digunakan dalam percobaan (tanah Regosol dan Latosol)

<table>
<thead>
<tr>
<th>No</th>
<th>Sifat Tanah</th>
<th>Regosol</th>
<th>Latosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>pH H₂O (1:2.5)</td>
<td>6.60</td>
<td>5.10</td>
</tr>
<tr>
<td>2.</td>
<td>pH KCl</td>
<td>5.60</td>
<td>4.10</td>
</tr>
<tr>
<td>3.</td>
<td>N total (%)</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>4.</td>
<td>C total (%)</td>
<td>0.66</td>
<td>2.30</td>
</tr>
<tr>
<td>5.</td>
<td>Al de (me 100 gr⁻¹)</td>
<td>11</td>
<td>2.04</td>
</tr>
<tr>
<td>6.</td>
<td>Bahan organik (%)</td>
<td>1.14</td>
<td>3.97</td>
</tr>
<tr>
<td>7.</td>
<td>P tersedia (mg/kg⁻¹)</td>
<td>32.72</td>
<td>5.47</td>
</tr>
</tbody>
</table>

Ket: 1. = tidak terukur
Certificate of Completion

This is to certify that

Dr. Ir. Sri Nuryani H.C., M.P., M.Sc.
has successfully completed

Asia Pacific RCE Conference
on Implementation and Action Programs of ESE
in Formal, Non-Formal and Informal Educations

organized by UNU-IAS and universities Saudi Arabia in January 2013

Certificate Date: 15 January 2013

Sincerely,

[Signatures]
Certificate of Attendance

This is to certify that:

Dr. Ir. Sri Nuryani Hidayah Utami, MP, MSc.
Universitas Gadjah Mada, Indonesia

has participated in the 1st ISHS Symposium on
Sustainable Vegetable Production in South East Asia
Held in Salatiga, Central Java, Indonesia, 13-17 March 2011

Satya Wacana Christian University,
Pat. Prof. Drs. John A. Titaley, Th.D
Rector

Organization committee,
Prof. Dr. Stefaan De Neve
Chairman
SERTIFIKAT

Diberikan Kepada:

Sri Nuryani

Atas partisipasi aktiffnya sebagai:

Pemakalah

SEMINAR NASIONAL & SATELITE MEETING
"UPAYA PEMULIHAN LAHAN AKIBAT ERUPTION GUNUNG API"

Diselenggarakan oleh:
Fakultas Pertanian Universitas Sebelas Maret Surakarta
bekerjasama dengan
HITI (Himpunan Ilmu Tanah Indonesia)
pada tanggal 26 - 27 April 2011

Surakarta, April 2011

Rektor
Universitas Sebelas Maret Surakarta

Prof. Dr. Ravik Karsidi, MS.
NIP.19570707.198103.1.006

Ketua Umum HITI

Dr. Ir. Yuswanda A. Temenggung
UNIVERSITAS GADJAH MADA

SERTIFIKAT
Nomor: LPPM-UGM/3258/BID.I/2010

diberikan kepada

atas partisipasinya sebagai

PESERTA

Pelatihan Penyusunan Penjaminan Mutu Riset Perguruan Tinggi
Yogyakarta, 28 – 29 Oktober 2010

Sekretaris
Lembaga Penelitian dan Pengabdian kepada Masyarakat UGM

Dr. drh. R. Wisnu Nurcahyo
<table>
<thead>
<tr>
<th>NO</th>
<th>MATERI</th>
<th>DURASI (Menit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Konsep Dasar Penjaminan Mutu di Perguruan Tinggi</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Sharing Pengalaman UGM Mengawali SPM-PT Universitas</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Pengenalan/Penyegaran SPMI-PT DIKTI</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Pengenalan/Penyegaran Struktur Dokumen/Dokumentasi SPMI-PT</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>Penjelasan & Diskusi Manual Prosedur</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Penjelasan & Diskusi tentang Prioritas Riset di UGM</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Kebijakan Riset UGM</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Penjelasan dan Diskusi Instruksi Kerja</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Diskusi Pelaksanaan Penjaminan Mutu</td>
<td>60</td>
</tr>
</tbody>
</table>

JUMLAH 540

Penanggung Jawab Kegiatan

Prof. Dr. Harno Dwi Pranowo, M.Si.
UNIVERSITAS GADJAH MADA

SERTIFIKAT

No : LPPM-UGM/1769/BID.II/2011

Diberikan kepada

Dr.Ir. Sri Nuryani Hidayah Utami, M.P.

Atas partisipasinya sebagai Peserta dalam Workshop

"Penulisan Paper Jurnal Internasional"

Diselenggarakan di Universitas Gadjah Mada Yogyakarta pada 20-21 Juli 2011

Sekretaris Lembaga Penelitian dan Pengabdian kepada Masyarakat
- Universitas Gadjah Mada

[Signature]

Dr. drh. R. Wisnu Nurcahyo